Internal
problem
ID
[13397]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-1.
Equations
with
sine
Problem
number
:
3
Date
solved
:
Wednesday, October 01, 2025 at 09:46:40 AM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2+lambda^2+c*sin(lambda*x+a)^n*sin(lambda*x+b)^(-n-4); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2+\[Lambda]^2+c*Sin[\[Lambda]*x+a]^n*Sin[\[Lambda]*x+b]^(-n-4); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") lambda_ = symbols("lambda_") n = symbols("n") y = Function("y") ode = Eq(-c*sin(a + lambda_*x)**n*sin(b + lambda_*x)**(-n - 4) - lambda_**2 - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -c*sin(a + lambda_*x)**n*sin(b + lambda_*x)**(-n - 4) - lambda_**2 - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method