55.9.5 problem 5

Internal problem ID [13399]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number : 5
Date solved : Wednesday, October 01, 2025 at 09:58:08 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+a \sin \left (b x \right )^{m} y+a \sin \left (b x \right )^{m} \end{align*}
Maple
ode:=diff(y(x),x) = y(x)^2+a*sin(b*x)^m*y(x)+a*sin(b*x)^m; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x]==y[x]^2+a*Sin[b*x]^m*y[x]+a*Sin[b*x]^m; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
m = symbols("m") 
y = Function("y") 
ode = Eq(-a*y(x)*sin(b*x)**m - a*sin(b*x)**m - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*y(x)*sin(b*x)**m - a*sin(b*x)**m - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method