Internal
problem
ID
[13424]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-3.
Equations
with
tangent.
Problem
number
:
30
Date
solved
:
Wednesday, October 01, 2025 at 11:39:48 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x) = a*y(x)^2+2*a*b*tan(x)*y(x)+b*(a*b-1)*tan(x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*y[x]^2+2*a*b*Tan[x]*y[x]+b*(a*b-1)*Tan[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-2*a*b*y(x)*tan(x) - a*y(x)**2 - b*(a*b - 1)*tan(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)