Internal
problem
ID
[13479]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.7-4.
Equations
containing
arccotangent.
Problem
number
:
28
Date
solved
:
Wednesday, October 01, 2025 at 03:14:09 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2+lambda*arccot(x)^n*y(x)-a^2+a*lambda*arccot(x)^n; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2+\[Lambda]*ArcCot[x]^n*y[x]-a^2+a*\[Lambda]*ArcCot[x]^n; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") n = symbols("n") y = Function("y") ode = Eq(a**2 - a*lambda_*(-atan(x) + pi/2)**n - lambda_*(-atan(x) + pi/2)**n*y(x) - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out