55.17.1 problem 28

Internal problem ID [13479]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-4. Equations containing arccotangent.
Problem number : 28
Date solved : Wednesday, October 01, 2025 at 03:14:09 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} y-a^{2}+a \lambda \operatorname {arccot}\left (x \right )^{n} \end{align*}
Maple. Time used: 0.006 (sec). Leaf size: 71
ode:=diff(y(x),x) = y(x)^2+lambda*arccot(x)^n*y(x)-a^2+a*lambda*arccot(x)^n; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-\int {\mathrm e}^{-\int \left (-\operatorname {arccot}\left (x \right )^{n} \lambda +2 a \right )d x}d x a -c_1 a -{\mathrm e}^{-\int \left (-\operatorname {arccot}\left (x \right )^{n} \lambda +2 a \right )d x}}{c_1 +\int {\mathrm e}^{-\int \left (-\operatorname {arccot}\left (x \right )^{n} \lambda +2 a \right )d x}d x} \]
Mathematica. Time used: 1.228 (sec). Leaf size: 210
ode=D[y[x],x]==y[x]^2+\[Lambda]*ArcCot[x]^n*y[x]-a^2+a*\[Lambda]*ArcCot[x]^n; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x-\frac {\exp \left (-\int _1^{K[2]}\left (2 a-\lambda \cot ^{-1}(K[1])^n\right )dK[1]\right ) \left (-\lambda \cot ^{-1}(K[2])^n+a-y(x)\right )}{n \lambda (a+y(x))}dK[2]+\int _1^{y(x)}\left (-\int _1^x\left (\frac {\exp \left (-\int _1^{K[2]}\left (2 a-\lambda \cot ^{-1}(K[1])^n\right )dK[1]\right ) \left (-\lambda \cot ^{-1}(K[2])^n+a-K[3]\right )}{n \lambda (a+K[3])^2}+\frac {\exp \left (-\int _1^{K[2]}\left (2 a-\lambda \cot ^{-1}(K[1])^n\right )dK[1]\right )}{n \lambda (a+K[3])}\right )dK[2]-\frac {\exp \left (-\int _1^x\left (2 a-\lambda \cot ^{-1}(K[1])^n\right )dK[1]\right )}{n \lambda (a+K[3])^2}\right )dK[3]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
lambda_ = symbols("lambda_") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a**2 - a*lambda_*(-atan(x) + pi/2)**n - lambda_*(-atan(x) + pi/2)**n*y(x) - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out