Internal
problem
ID
[13483]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.7-3.
Equations
containing
arctangent.
Problem
number
:
32
Date
solved
:
Wednesday, October 01, 2025 at 03:15:22 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = lambda*arccot(x)^n*y(x)^2-b*lambda*x^m*arccot(x)^n*y(x)+b*m*x^(m-1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==\[Lambda]*ArcCot[x]^n*y[x]^2-b*\[Lambda]*x^m*ArcCot[x]^n*y[x]+b*m*x^(m-1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") b = symbols("b") lambda_ = symbols("lambda_") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(b*lambda_*x**m*(-atan(x) + pi/2)**n*y(x) - b*m*x**(m - 1) - lambda_*(-atan(x) + pi/2)**n*y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out