55.19.5 problem 5

Internal problem ID [13490]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number : 5
Date solved : Wednesday, October 01, 2025 at 03:32:20 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}+a n \,x^{n -1}-a^{2} x^{2 n} f \left (x \right ) \end{align*}
Maple
ode:=diff(y(x),x) = y(x)^2*f(x)+a*n*x^(n-1)-a^2*x^(2*n)*f(x); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x]==f[x]*y[x]^2+a*n*x^(n-1)-a^2*x^(2*n)*f[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
n = symbols("n") 
y = Function("y") 
f = Function("f") 
ode = Eq(a**2*x**(2*n)*f(x) - a*n*x**(n - 1) - f(x)*y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE a**2*x**(2*n)*f(x) - a*n*x**(n - 1) - f(x)*y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method