Internal
problem
ID
[13504]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.8-1.
Equations
containing
arbitrary
functions
(but
not
containing
their
derivatives).
Problem
number
:
19
Date
solved
:
Wednesday, October 01, 2025 at 03:33:29 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2*f(x)-a*exp(lambda*x)*g(x)*y(x)+a*lambda*exp(lambda*x)+a^2*exp(2*lambda*x)*(g(x)-f(x)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==f[x]*y[x]^2-a*Exp[\[Lambda]*x]*g[x]*y[x]+a*\[Lambda]*Exp[\[Lambda]*x]+a^2*Exp[2*\[Lambda]*x]*(g[x]-f[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") y = Function("y") f = Function("f") g = Function("g") ode = Eq(-a**2*(-f(x) + g(x))*exp(2*lambda_*x) - a*lambda_*exp(lambda_*x) + a*g(x)*y(x)*exp(lambda_*x) - f(x)*y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a**2*f(x)*exp(2*lambda_*x) - a**2*g(x)*exp(2*lambda_*x) - a*lambda_*exp(lambda_*x) + a*g(x)*y(x)*exp(lambda_*x) - f(x)*y(x)**2 + Derivative(y(x), x) cannot be solved by the factorable group method