Internal
problem
ID
[13513]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.8-1.
Equations
containing
arbitrary
functions
(but
not
containing
their
derivatives).
Problem
number
:
28
Date
solved
:
Wednesday, October 01, 2025 at 03:49:27 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = -a*ln(x)*y(x)^2+a*f(x)*(x*ln(x)-x)*y(x)-f(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==-a*Log[x]*y[x]^2+a*f[x]*(x*Log[x]-x)*y[x]-f[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") f = Function("f") ode = Eq(-a*(x*log(x) - x)*f(x)*y(x) + a*y(x)**2*log(x) + f(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*x*f(x)*y(x)*log(x) + a*x*f(x)*y(x) + a*y(x)**2*log(x) + f(x) + Derivative(y(x), x) cannot be solved by the factorable group method