Internal
problem
ID
[13517]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.8-1.
Equations
containing
arbitrary
functions
(but
not
containing
their
derivatives).
Problem
number
:
32
Date
solved
:
Wednesday, October 01, 2025 at 03:51:38 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2*f(x)-a*tan(lambda*x)^2*(a*f(x)-lambda)+a*lambda; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==f[x]*y[x]^2-a*Tan[\[Lambda]*x]^2*(a*f[x]-\[Lambda])+a*\[Lambda]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") y = Function("y") f = Function("f") ode = Eq(-a*lambda_ + a*(a*f(x) - lambda_)*tan(lambda_*x)**2 - f(x)*y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a**2*f(x)*tan(lambda_*x)**2 - a*lambda_*tan(lambda_*x)**2 - a*lambda_ - f(x)*y(x)**2 + Derivative(y(x), x) cannot be solved by the factorable group method