Internal
problem
ID
[13520]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.8-2.
Equations
containing
arbitrary
functions
and
their
derivatives.
Problem
number
:
35
Date
solved
:
Wednesday, October 01, 2025 at 03:56:24 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2*f(x)-f(x)*g(x)*y(x)+diff(g(x),x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==f[x]*y[x]^2-f[x]*g[x]*y[x]+D[ g[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") f = Function("f") g = Function("g") ode = Eq(f(x)*g(x)*y(x) - f(x)*y(x)**2 - Derivative(g(x), x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE f(x)*g(x)*y(x) - f(x)*y(x)**2 - Derivative(g(x), x) + Derivative(y(x), x) cannot be solved by the lie group method