Internal
problem
ID
[13538]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.9.
Some
Transformations
Problem
number
:
11
Date
solved
:
Wednesday, October 01, 2025 at 04:19:45 PM
CAS
classification
:
[_Riccati]
ode:=x^2*diff(y(x),x) = x^2*y(x)^2+f(a*ln(x)+b)+1/4; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]==x^2*y[x]^2+f[a*Log[x]+b]+1/4; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") f = Function("f") ode = Eq(-x**2*y(x)**2 + x**2*Derivative(y(x), x) - f(a*log(x) + b) - 1/4,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*y(x)**2 + f(a*log(x) + b) + 1/4)/x**2 cannot be solved by the factorable group method