55.21.13 problem 13

Internal problem ID [13540]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number : 13
Date solved : Wednesday, October 01, 2025 at 04:22:21 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+\lambda ^{2}+\frac {f \left (\tan \left (\lambda x \right )\right )}{\cos \left (\lambda x \right )^{4}} \end{align*}
Maple
ode:=diff(y(x),x) = y(x)^2+lambda^2+1/cos(lambda*x)^4*f(tan(lambda*x)); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x]==y[x]^2+\[Lambda]^2+Cos[\[Lambda]*x]^(-4)*f[Tan[\[Lambda]*x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(-lambda_**2 - f(tan(lambda_*x))/cos(lambda_*x)**4 - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -lambda_**2 - f(tan(lambda_*x))/cos(lambda_*x)**4 - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method