55.22.7 problem 7

Internal problem ID [13548]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.1-2. Solvable equations and their solutions
Problem number : 7
Date solved : Sunday, October 12, 2025 at 03:39:24 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y y^{\prime }-y&=\frac {A}{x}-\frac {A^{2}}{x^{3}} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 68
ode:=y(x)*diff(y(x),x)-y(x) = A/x-A^2/x^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-\operatorname {RootOf}\left (2 \textit {\_Z} A \,{\mathrm e}^{2 \textit {\_Z}}-x^{2} {\mathrm e}^{2 \textit {\_Z}}+2 c_1 \,x^{2} {\mathrm e}^{\textit {\_Z}}-c_1^{2} x^{2}-2 A \,{\mathrm e}^{2 \textit {\_Z}}+2 A c_1 \,{\mathrm e}^{\textit {\_Z}}\right )} c_1 \,x^{2}-A}{x} \]
Mathematica. Time used: 0.247 (sec). Leaf size: 63
ode=y[x]*D[y[x],x]-y[x]==A*x^(-1)-A^2*x^(-3); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [x^2 \left (-\frac {1}{A}+\frac {2 x^2 \log \left (\frac {x^2}{A+x y(x)}\right )+2 A-c_1 x^2+2 x y(x)}{\left (A-x^2+x y(x)\right )^2}\right )=0,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
A = symbols("A") 
y = Function("y") 
ode = Eq(A**2/x**3 - A/x + y(x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE A**2/(x**3*y(x)) - A/(x*y(x)) + Derivative(y(x), x) - 1 cannot be solved by the factorable group method