55.22.33 problem 33

Internal problem ID [13574]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.1-2. Solvable equations and their solutions
Problem number : 33
Date solved : Wednesday, October 01, 2025 at 05:49:51 PM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y y^{\prime }-y&=\frac {A}{x^{2}} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 276
ode:=y(x)*diff(y(x),x)-y(x) = A/x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {\left (x -y\right ) A \left (\operatorname {AiryBi}\left (-\frac {\left (x^{3}-2 y x^{2}+x y^{2}+2 A \right ) 2^{{2}/{3}}}{4 \left (-A^{2}\right )^{{1}/{3}} x}\right ) c_1 -\operatorname {AiryAi}\left (-\frac {\left (x^{3}-2 y x^{2}+x y^{2}+2 A \right ) 2^{{2}/{3}}}{4 \left (-A^{2}\right )^{{1}/{3}} x}\right )\right ) 2^{{1}/{3}}+2 \left (-A^{2}\right )^{{2}/{3}} \left (-\operatorname {AiryBi}\left (1, -\frac {\left (x^{3}-2 y x^{2}+x y^{2}+2 A \right ) 2^{{2}/{3}}}{4 \left (-A^{2}\right )^{{1}/{3}} x}\right ) c_1 +\operatorname {AiryAi}\left (1, -\frac {\left (x^{3}-2 y x^{2}+x y^{2}+2 A \right ) 2^{{2}/{3}}}{4 \left (-A^{2}\right )^{{1}/{3}} x}\right )\right )}{A 2^{{1}/{3}} \left (x -y\right ) \operatorname {AiryBi}\left (-\frac {\left (x^{3}-2 y x^{2}+x y^{2}+2 A \right ) 2^{{2}/{3}}}{4 \left (-A^{2}\right )^{{1}/{3}} x}\right )-2 \operatorname {AiryBi}\left (1, -\frac {\left (x^{3}-2 y x^{2}+x y^{2}+2 A \right ) 2^{{2}/{3}}}{4 \left (-A^{2}\right )^{{1}/{3}} x}\right ) \left (-A^{2}\right )^{{2}/{3}}} = 0 \]
Mathematica. Time used: 2.595 (sec). Leaf size: 213
ode=y[x]*D[y[x],x]-y[x]==A*x^(-2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {\operatorname {AiryAiPrime}\left (-\frac {\sqrt [3]{-\frac {1}{2}} \left (x^3-2 y(x) x^2+y(x)^2 x+2 A\right )}{2 A^{2/3} x}\right )-\frac {\left (-\frac {1}{2}\right )^{2/3} (x-y(x)) \operatorname {AiryAi}\left (-\frac {\sqrt [3]{-\frac {1}{2}} \left (x^3-2 y(x) x^2+y(x)^2 x+2 A\right )}{2 A^{2/3} x}\right )}{\sqrt [3]{A}}}{\operatorname {AiryBiPrime}\left (-\frac {\sqrt [3]{-\frac {1}{2}} \left (x^3-2 y(x) x^2+y(x)^2 x+2 A\right )}{2 A^{2/3} x}\right )-\frac {\left (-\frac {1}{2}\right )^{2/3} (x-y(x)) \operatorname {AiryBi}\left (-\frac {\sqrt [3]{-\frac {1}{2}} \left (x^3-2 y(x) x^2+y(x)^2 x+2 A\right )}{2 A^{2/3} x}\right )}{\sqrt [3]{A}}}+c_1=0,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
A = symbols("A") 
y = Function("y") 
ode = Eq(-A/x**2 + y(x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -A/(x**2*y(x)) + Derivative(y(x), x) - 1 cannot be solved by the factorable group method