55.22.69 problem 69

Internal problem ID [13610]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.1-2. Solvable equations and their solutions
Problem number : 69
Date solved : Wednesday, October 01, 2025 at 07:06:29 PM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y y^{\prime }-y&=-\frac {33 x}{169}+\frac {286 A^{2}}{3 x^{{5}/{11}}}-\frac {770 A^{3}}{9 x^{{13}/{11}}} \end{align*}
Maple
ode:=y(x)*diff(y(x),x)-y(x) = -33/169*x+286/3*A^2/x^(5/11)-770/9*A^3/x^(13/11); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=y[x]*D[y[x],x]-y[x]==-33/169*x+286/3*A^2*x^(-5/11)-770/9*A^3*x^(-13/11); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
A = symbols("A") 
y = Function("y") 
ode = Eq(770*A**3/(9*x**(13/11)) - 286*A**2/(3*x**(5/11)) + 33*x/169 + y(x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out