55.24.11 problem 11

Internal problem ID [13640]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 11
Date solved : Wednesday, October 01, 2025 at 09:17:57 PM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y y^{\prime }&=\left (a \left (2 n +k \right ) x^{2 k}+b \left (2 m -k \right )\right ) x^{m -k -1} y-\frac {a^{2} m \,x^{4 k}+c \,x^{2 k}+b^{2} m}{x} \end{align*}
Maple
ode:=y(x)*diff(y(x),x) = (a*(2*n+k)*x^(2*k)+b*(2*m-k))*x^(m-k-1)*y(x)-(a^2*m*x^(4*k)+c*x^(2*k)+b^2*m)/x; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=y[x]*D[y[x],x]==(a*(2*n+k)*x^(2*k)+b*(2*m-k))*x^(m-k-1)*y[x]-(a^2*m*x^(4*k)+c*x^(2*k)+b^2*m)*x^(2*m-2*m-1); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
k = symbols("k") 
m = symbols("m") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-x**(-k + m - 1)*(a*x**(2*k)*(k + 2*n) + b*(-k + 2*m))*y(x) + y(x)*Derivative(y(x), x) + (a**2*m*x**(4*k) + b**2*m + c*x**(2*k))/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out