Internal
problem
ID
[13642]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.3.
Abel
Equations
of
the
Second
Kind.
subsection
1.3.3-2.
Problem
number
:
13
Date
solved
:
Wednesday, October 01, 2025 at 10:05:35 PM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class A`]]
ode:=y(x)*diff(y(x),x) = (a*(2*n+1)*x^2+c*x+b*(-1+2*n))*x^(n-2)*y(x)-(a^2*n*x^4+a*c*x^3+b^2*n+b*c*x+d*x^2)*x^(2*n-3); dsolve(ode,y(x), singsol=all);
ode=y[x]*D[y[x],x]==(a*(2*n+1)*x^2+c*x+b*(2*n-1))*x^(n-2)*y[x]-(n*a^2*x^4+a*c*x^3+d*x^2+b*c*x+n*b^2)*x^(2*n-3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Timed out
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") n = symbols("n") y = Function("y") ode = Eq(-x**(n - 2)*(a*x**2*(2*n + 1) + b*(2*n - 1) + c*x)*y(x) + x**(2*n - 3)*(a**2*n*x**4 + a*c*x**3 + b**2*n + b*c*x + d*x**2) + y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out