Internal
problem
ID
[13647]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.3.
Abel
Equations
of
the
Second
Kind.
subsection
1.3.3-2.
Problem
number
:
18
Date
solved
:
Wednesday, October 01, 2025 at 10:44:21 PM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class B`]]
ode:=3*y(x)*diff(y(x),x) = (-7*lambda*s*(3*s+4*lambda)*x+6*s-2*lambda)/x^(1/3)*y(x)+6*(lambda*s*x-1)/x^(2/3)+2*(lambda*s*(3*s+4*lambda)*x+5*lambda)*(-lambda*s*(3*s+4*lambda)*x+3*s+4*lambda)*x^(1/3); dsolve(ode,y(x), singsol=all);
ode=3*y[x]*D[y[x],x]==(-7*\[Lambda]*s*(3*s+4*\[Lambda])*x+6*s-2*\[Lambda])*x^(-1/3)*y[x]+6*(\[Lambda]*s*x-1)*x^(-2/3)+2*(\[Lambda]*s*(3*s+4*\[Lambda])*x+5*\[Lambda])*(-\[Lambda]*s*(3*s+4*\[Lambda])*x+3*s+4*\[Lambda])*x^(1/3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Timed out
from sympy import * x = symbols("x") lambda_ = symbols("lambda_") s = symbols("s") y = Function("y") ode = Eq(-x**(1/3)*(2*lambda_*s*x*(4*lambda_ + 3*s) + 10*lambda_)*(-lambda_*s*x*(4*lambda_ + 3*s) + 4*lambda_ + 3*s) + 3*y(x)*Derivative(y(x), x) - (-7*lambda_*s*x*(4*lambda_ + 3*s) - 2*lambda_ + 6*s)*y(x)/x**(1/3) - (6*lambda_*s*x - 6)/x**(2/3),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out