55.24.38 problem 38

Internal problem ID [13667]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 38
Date solved : Thursday, October 02, 2025 at 12:05:03 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y y^{\prime }+\frac {a \left (39 x -4\right ) y}{42 x^{{9}/{7}}}&=-\frac {a^{2} \left (x -1\right ) \left (9 x -1\right )}{42 x^{{11}/{7}}} \end{align*}
Maple
ode:=y(x)*diff(y(x),x)+1/42*a*(39*x-4)/x^(9/7)*y(x) = -1/42*a^2*(x-1)*(9*x-1)/x^(11/7); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=y[x]*D[y[x],x]+1/42*a*(39*x-4)*x^(-9/7)*y[x]==-1/42*a^2*(x-1)*(9*x-1)*x^(-11/7); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a**2*(x - 1)*(9*x - 1)/(42*x**(11/7)) + a*(39*x - 4)*y(x)/(42*x**(9/7)) + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out