Internal
problem
ID
[13694]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.3.
Abel
Equations
of
the
Second
Kind.
subsection
1.3.3-2.
Problem
number
:
65
Date
solved
:
Thursday, October 02, 2025 at 02:28:47 AM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class A`]]
ode:=y(x)*diff(y(x),x)+a/(3+n)*(1/2*(3*n+5)*x+(n-1)/(n+1))*x^(-(n+4)/(3+n))*y(x) = -a^2/(6+2*n)*((n+1)*x^2-(n^2+2*n+5)/(n+1)*x+4/(n+1))*x^(-(n+5)/(3+n)); dsolve(ode,y(x), singsol=all);
ode=y[x]*D[y[x],x]+a/(n+3)*((3*n+5)/(2)*x+(n-1)/(n+1))*x^(-(n+4)/(n+3))*y[x]==-a^2/(2*(n+3))*((n+1)*x^2-(n^2+2*n+5)/(n+1)*x+4/(n+1))*x^(-(n+5)/(n+3)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Timed out
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq(a**2*x**((-n - 5)/(n + 3))*(x**2*(n + 1) - x*(n**2 + 2*n + 5)/(n + 1) + 4/(n + 1))/(2*n + 6) + a*x**((-n - 4)/(n + 3))*(x*(3*n + 5)/2 + (n - 1)/(n + 1))*y(x)/(n + 3) + y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out