55.24.80 problem 80

Internal problem ID [13709]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 80
Date solved : Thursday, October 02, 2025 at 03:21:18 AM
CAS classification : [[_Abel, `2nd type`, `class A`]]

\begin{align*} y y^{\prime }&=a x \sin \left (\lambda \,x^{2}\right ) y+x \end{align*}
Maple
ode:=y(x)*diff(y(x),x) = a*x*sin(lambda*x^2)*y(x)+x; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=y[x]*D[y[x],x]==a*x*Sin[\[Lambda]*x^2]*y[x]+x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(-a*x*y(x)*sin(lambda_*x**2) - x + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out