Internal
problem
ID
[13709]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.3.
Abel
Equations
of
the
Second
Kind.
subsection
1.3.3-2.
Problem
number
:
80
Date
solved
:
Thursday, October 02, 2025 at 03:21:18 AM
CAS
classification
:
[[_Abel, `2nd type`, `class A`]]
ode:=y(x)*diff(y(x),x) = a*x*sin(lambda*x^2)*y(x)+x; dsolve(ode,y(x), singsol=all);
ode=y[x]*D[y[x],x]==a*x*Sin[\[Lambda]*x^2]*y[x]+x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(-a*x*y(x)*sin(lambda_*x**2) - x + y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out