Internal
problem
ID
[13737]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.3.
Abel
Equations
of
the
Second
Kind.
subsection
1.3.4-2.
Problem
number
:
28
Date
solved
:
Thursday, October 02, 2025 at 06:39:48 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, `2nd type`, `class B`]]
ode:=(A*x*y(x)+B*x^2+(k-1)*A*a*y(x)-(A*b*k+B*a)*x)*diff(y(x),x) = A*y(x)^2+B*x*y(x)-(B*a*k+A*b)*y(x)+(k-1)*B*b*x; dsolve(ode,y(x), singsol=all);
ode=(A*x*y[x]+B*x^2+(k-1)*A*a*y[x]-(A*b*k+B*a)*x)*D[y[x],x]==A*y[x]^2+B*x*y[x]-(A*b+B*a*k)*y[x]+(k-1)*B*b*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") A = symbols("A") B = symbols("B") k = symbols("k") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-A*y(x)**2 - B*b*x*(k - 1) - B*x*y(x) + (A*b + B*a*k)*y(x) + (A*a*(k - 1)*y(x) + A*x*y(x) + B*x**2 - x*(A*b*k + B*a))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out