Internal
problem
ID
[13759]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.4.
Equations
Containing
Polynomial
Functions
of
y.
subsection
1.4.1-2
Abel
equations
of
the
first
kind.
Problem
number
:
12
Date
solved
:
Thursday, October 02, 2025 at 07:58:28 AM
CAS
classification
:
[_Abel]
ode:=9*diff(y(x),x) = -x^m*(a*x^(-m+1)+b)^(2*lambda+1)*y(x)^3-x^(-2*m)*(9*a+2+9*b*m*x^(m-1))*(a*x^(-m+1)+b)^(-lambda-2); dsolve(ode,y(x), singsol=all);
ode=9*D[y[x],x]==-x^m*(a*x^(1-m)+b)^(2*\[Lambda]+1)*y[x]^3-x^(-2*m)*(9*a+2+9*b*m*x^(m-1))*(a*x^(1-m)+b)^(-\[Lambda]-2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") lambda_ = symbols("lambda_") m = symbols("m") y = Function("y") ode = Eq(x**m*(a*x**(1 - m) + b)**(2*lambda_ + 1)*y(x)**3 + 9*Derivative(y(x), x) + (a*x**(1 - m) + b)**(-lambda_ - 2)*(9*a + 9*b*m*x**(m - 1) + 2)/x**(2*m),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out