Internal
problem
ID
[13769]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.4.
Equations
Containing
Polynomial
Functions
of
y.
subsection
1.4.1-2
Abel
equations
of
the
first
kind.
Problem
number
:
22
Date
solved
:
Sunday, October 12, 2025 at 05:28:25 AM
CAS
classification
:
[_Abel]
ode:=diff(y(x),x) = -y(x)^3+3*a^2*exp(2*lambda*x)*y(x)-2*a^3*exp(3*lambda*x)+a*lambda*exp(lambda*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==-y[x]^3+3*a^2*Exp[2*\[Lambda]*x]*y[x]-2*a^3*Exp[3*\[Lambda]*x]+a*\[Lambda]*Exp[\[Lambda]*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(2*a**3*exp(3*lambda_*x) - 3*a**2*y(x)*exp(2*lambda_*x) - a*lambda_*exp(lambda_*x) + y(x)**3 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 2*a**3*exp(3*lambda_*x) - 3*a**2*y(x)*exp(2*lambda_*x) - a*lambda_*exp(lambda_*x) + y(x)**3 + Derivative(y(x), x) cannot be solved by the lie group method