55.27.5 problem 5

Internal problem ID [13778]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing Power Functions. page 213
Problem number : 5
Date solved : Thursday, October 02, 2025 at 08:06:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 26
ode:=diff(diff(y(x),x),x)+a^3*x*(-a*x+2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {a x \left (a x -2\right )}{2}} \left (c_2 \,\operatorname {erf}\left (i a x -i\right )+c_1 \right ) \]
Mathematica. Time used: 0.114 (sec). Leaf size: 50
ode=D[y[x],{x,2}]+a^3*x*(2-a*x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{-\frac {1}{2} a x (a x-2)-1} \left (2 e a c_1-\sqrt {\pi } c_2 \text {erfi}(1-a x)\right )}{2 a} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a**3*x*(-a*x + 2)*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False