Internal
problem
ID
[13783]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2
Equations
Containing
Power
Functions.
page
213
Problem
number
:
10
Date
solved
:
Friday, October 03, 2025 at 06:54:44 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+(a*x^(2*n)+b*x^(n-1))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(a*x^(2*n)+b*x^(n-1))*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") n = symbols("n") y = Function("y") ode = Eq((a*x**(2*n) + b*x**(n - 1))*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : Mul object cannot be interpreted as an integer