55.28.22 problem 32

Internal problem ID [13805]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-2
Problem number : 32
Date solved : Thursday, October 02, 2025 at 08:07:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y&=0 \end{align*}
Maple
ode:=diff(diff(y(x),x),x)+(a*x+b)*diff(y(x),x)+c*(-c*x^(2*n)+x^(n+1)*a+b*x^n+n*x^(n-1))*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],{x,2}]+(a*x+b)*D[y[x],x]+c*(-c*x^(2*n)+a*x^(n+1)+b*x^n+n*x^(n-1) )*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
n = symbols("n") 
y = Function("y") 
ode = Eq(c*(a*x**(n + 1) + b*x**n - c*x**(2*n) + n*x**(n - 1))*y(x) + (a*x + b)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : Mul object cannot be interpreted as an integer