Internal
problem
ID
[13822]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-2
Problem
number
:
49
Date
solved
:
Friday, October 03, 2025 at 06:54:59 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+2*a*x^n*diff(y(x),x)+(a^2*x^(2*n)+b*x^(2*m)+a*n*x^(n-1)+c*x^(m-1))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+2*a*x^n*D[y[x],x]+(a^2*x^(2*n)+b*x^(2*m)+a*n*x^(n-1)+c*x^(m-1))*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(2*a*x**n*Derivative(y(x), x) + (a**2*x**(2*n) + a*n*x**(n - 1) + b*x**(2*m) + c*x**(m - 1))*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
RecursionError : maximum recursion depth exceeded