55.29.27 problem 87

Internal problem ID [13860]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-3
Problem number : 87
Date solved : Thursday, October 02, 2025 at 08:07:56 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x y^{\prime \prime }+\left (a \,x^{2}+b \right ) x y^{\prime }+\left (3 a \,x^{2}+b \right ) y&=0 \end{align*}
Maple. Time used: 0.022 (sec). Leaf size: 42
ode:=x*diff(diff(y(x),x),x)+x*(a*x^2+b)*diff(y(x),x)+(3*a*x^2+b)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \,{\mathrm e}^{-\frac {x \left (a \,x^{2}+3 b \right )}{3}} \left (c_1 \int \frac {{\mathrm e}^{\frac {x \left (a \,x^{2}+3 b \right )}{3}}}{x^{2}}d x +c_2 \right ) \]
Mathematica. Time used: 1.679 (sec). Leaf size: 56
ode=x*D[y[x],{x,2}]+x*(a*x^2+b)*D[y[x],x]+(3*a*x^2+b)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x e^{-\frac {a x^3}{3}-b x} \left (c_2 \int _1^x\frac {e^{\frac {1}{3} a K[1]^3+b K[1]}}{K[1]^2}dK[1]+c_1\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(x*(a*x**2 + b)*Derivative(y(x), x) + x*Derivative(y(x), (x, 2)) + (3*a*x**2 + b)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False