Internal
problem
ID
[13865]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-3
Problem
number
:
92
Date
solved
:
Thursday, October 02, 2025 at 08:08:01 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*diff(diff(y(x),x),x)+(a*x^n+2)*diff(y(x),x)+a*x^(n-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]+(a*x^n+2)*D[y[x],x]+a*x^(n-1)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq(a*x**(n - 1)*y(x) + x*Derivative(y(x), (x, 2)) + (a*x**n + 2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False