55.29.41 problem 101

Internal problem ID [13874]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-3
Problem number : 101
Date solved : Thursday, October 02, 2025 at 08:08:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (a \,x^{n}+b x \right ) y^{\prime }+\left (a b \,x^{n}+a n \,x^{n -1}-b \right ) y&=0 \end{align*}
Maple
ode:=x*diff(diff(y(x),x),x)+(a*x^n+b*x)*diff(y(x),x)+(a*b*x^n+a*n*x^(n-1)-b)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=x*D[y[x],{x,2}]+(a*x^n+b*x)*D[y[x],x]+(a*b*x^n+a*n*x^(n-1)-b)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
n = symbols("n") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + (a*x**n + b*x)*Derivative(y(x), x) + (a*b*x**n + a*n*x**(n - 1) - b)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False