Internal
problem
ID
[13880]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-3
Problem
number
:
107
Date
solved
:
Friday, October 03, 2025 at 06:55:20 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(a*x+b)*diff(diff(y(x),x),x)+s*(c*x+d)*diff(y(x),x)-s^2*((a+c)*x+b+d)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x+b)*D[y[x],{x,2}]+s*(c*x+d)*D[y[x],x]-s^2*((a+c)*x+b+d)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") s = symbols("s") y = Function("y") ode = Eq(-s**2*(b + d + x*(a + c))*y(x) + s*(c*x + d)*Derivative(y(x), x) + (a*x + b)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False