55.33.2 problem 212

Internal problem ID [13985]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-7
Problem number : 212
Date solved : Friday, October 03, 2025 at 07:23:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{4} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \end{align*}
Maple. Time used: 0.068 (sec). Leaf size: 59
ode:=x^4*diff(diff(y(x),x),x)+(a*x^2+b*x+c)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left (c_1 \operatorname {WhittakerM}\left (-\frac {i b}{2 \sqrt {c}}, \frac {\sqrt {1-4 a}}{2}, \frac {2 i \sqrt {c}}{x}\right )+c_2 \operatorname {WhittakerW}\left (-\frac {i b}{2 \sqrt {c}}, \frac {\sqrt {1-4 a}}{2}, \frac {2 i \sqrt {c}}{x}\right )\right ) \]
Mathematica
ode=x^4*D[y[x],{x,2}]+(a*x^2+b*x+c)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(x**4*Derivative(y(x), (x, 2)) + (a*x**2 + b*x + c)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve x**4*Derivative(y(x), (x, 2)) + (a*x**2 + b*x + c)*y(x)