Internal
problem
ID
[13987]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-7
Problem
number
:
214
Date
solved
:
Thursday, October 02, 2025 at 09:08:24 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^4*diff(diff(y(x),x),x)+2*x^2*(x+a)*diff(y(x),x)+b*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],{x,2}]+2*x^2*(x+a)*D[y[x],x]+b*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(b*y(x) + x**4*Derivative(y(x), (x, 2)) + 2*x**2*(a + x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-b*y(x) - x**4*Derivative(y(x), (x, 2)))/(2*x**2*(a + x)) cannot be solved by the factorable group method