Internal
problem
ID
[14000]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-7
Problem
number
:
226
Date
solved
:
Friday, October 03, 2025 at 07:23:22 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(-x^2+1)^2*diff(diff(y(x),x),x)-2*x*(-x^2+1)*diff(y(x),x)+(nu*(nu+1)*(-x^2+1)-mu^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1-x^2)^2*D[y[x],{x,2}]-2*x*(1-x^2)*D[y[x],x]+(\[Nu]*(\[Nu]+1)*(1-x^2)-\[Mu]^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") mu = symbols("mu") nu = symbols("nu") y = Function("y") ode = Eq(-2*x*(1 - x**2)*Derivative(y(x), x) + (1 - x**2)**2*Derivative(y(x), (x, 2)) + (-mu**2 + nu*(1 - x**2)*(nu + 1))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False