Internal
problem
ID
[14007]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-7
Problem
number
:
233
Date
solved
:
Thursday, October 02, 2025 at 09:08:46 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x-a)^2*(x-b)^2*diff(diff(y(x),x),x)+(x-a)*(x-b)*(2*x+lambda)*diff(y(x),x)+mu*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x-a)^2*(x-b)^2*D[y[x],{x,2}]+(x-a)*(x-b)*(2*x+\[Lambda])*D[y[x],x]+mu*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") lambda_ = symbols("lambda_") mu = symbols("mu") y = Function("y") ode = Eq(mu*y(x) + (-a + x)**2*(-b + x)**2*Derivative(y(x), (x, 2)) + (-a + x)*(-b + x)*(lambda_ + 2*x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False