Internal
problem
ID
[14009]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-7
Problem
number
:
235
Date
solved
:
Friday, October 03, 2025 at 07:23:25 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2-1)^2*diff(diff(y(x),x),x)+2*x*(x^2-1)*diff(y(x),x)+((x^2-1)*(a^2*x^2-lambda)-m^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-1)^2*D[y[x],{x,2}]+2*x*(x^2-1)*D[y[x],x]+( (x^2-1)*(a^2*x^2-\[Lambda])-m^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") m = symbols("m") y = Function("y") ode = Eq(2*x*(x**2 - 1)*Derivative(y(x), x) + (-m**2 + (x**2 - 1)*(a**2*x**2 - lambda_))*y(x) + (x**2 - 1)**2*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False