Internal
problem
ID
[14033]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-8.
Other
equations.
Problem
number
:
260
Date
solved
:
Thursday, October 02, 2025 at 09:09:38 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^(n+1)*a+b*x^n+c)^2*diff(diff(y(x),x),x)+(alpha*x^n+beta*x^(n-1)+gamma)*diff(y(x),x)+(n*(-a*n-a+alpha)*x^(n-1)+(n-1)*(-b*n+beta)*x^(n-2))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^(n+1)+b*x^n+c)^2*D[y[x],{x,2}]+(\[Alpha]*x^n+\[Beta]*x^(n-1)+\[Gamma])*D[y[x],x]+(n*(\[Alpha]-a-a*n)*x^(n-1)+(n-1)*(\[Beta]-b*n)*x^(n-2))*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") Gamma = symbols("Gamma") a = symbols("a") b = symbols("b") c = symbols("c") n = symbols("n") y = Function("y") ode = Eq((n*x**(n - 1)*(Alpha - a*n - a) + x**(n - 2)*(BETA - b*n)*(n - 1))*y(x) + (Alpha*x**n + BETA*x**(n - 1) + Gamma)*Derivative(y(x), x) + (a*x**(n + 1) + b*x**n + c)**2*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : Add object cannot be interpreted as an integer