55.35.9 problem 9

Internal problem ID [14046]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number : 9
Date solved : Thursday, October 02, 2025 at 09:09:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 33
ode:=diff(diff(y(x),x),x)-a*diff(y(x),x)+b*exp(2*a*x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (\frac {{\mathrm e}^{a x} \sqrt {b}}{a}\right )+c_2 \cos \left (\frac {{\mathrm e}^{a x} \sqrt {b}}{a}\right ) \]
Mathematica. Time used: 0.024 (sec). Leaf size: 42
ode=D[y[x],{x,2}]-a*D[y[x],x]+b*Exp[2*a*x]*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cos \left (\frac {\sqrt {b} e^{a x}}{a}\right )+c_2 \sin \left (\frac {\sqrt {b} e^{a x}}{a}\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-a*Derivative(y(x), x) + b*y(x)*exp(2*a*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False