55.35.25 problem 25

Internal problem ID [14062]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number : 25
Date solved : Friday, October 03, 2025 at 07:24:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+2 b -\lambda \right ) y^{\prime }+\left (c \,{\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+b^{2}-b \lambda \right ) y&=0 \end{align*}
Maple. Time used: 0.193 (sec). Leaf size: 59
ode:=diff(diff(y(x),x),x)+(exp(lambda*x)*a+2*b-lambda)*diff(y(x),x)+(c*exp(2*lambda*x)+a*b*exp(lambda*x)+b^2-b*lambda)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{\frac {{\mathrm e}^{\lambda x} \sqrt {a^{2}-4 c}}{\lambda }}+c_2 \right ) {\mathrm e}^{-\frac {2 b x \lambda +{\mathrm e}^{\lambda x} \sqrt {a^{2}-4 c}+a \,{\mathrm e}^{\lambda x}}{2 \lambda }} \]
Mathematica. Time used: 0.532 (sec). Leaf size: 97
ode=D[y[x],{x,2}]+(a*Exp[\[Lambda]*x]+2*b-\[Lambda])*D[y[x],x]+(c*Exp[2*\[Lambda]*x]+a*b*Exp[\[Lambda]*x]+b^2-b*\[Lambda])*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\left (e^{\lambda x}\right )^{-\frac {b}{\lambda }} e^{-\frac {\left (\sqrt {a^2-4 c}+a\right ) e^{\lambda x}}{2 \lambda }} \left (c_2 \lambda e^{\frac {\sqrt {a^2-4 c} e^{\lambda x}}{\lambda }}+c_1 \sqrt {a^2-4 c}\right )}{\sqrt {a^2-4 c}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq((a*exp(lambda_*x) + 2*b - lambda_)*Derivative(y(x), x) + (a*b*exp(lambda_*x) + b**2 - b*lambda_ + c*exp(2*lambda_*x))*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False