Internal
problem
ID
[14080]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
2,
differential
equations
of
the
first
order
and
the
first
degree.
Article
8.
Exact
differential
equations.
Page
11
Problem
number
:
Ex
2
Date
solved
:
Thursday, October 02, 2025 at 09:10:44 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
ode:=(y(x)^2-2*x^2)/(x*y(x)^2-x^3)+(2*y(x)^2-x^2)/(y(x)^3-x^2*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(y[x]^2-2*x^2)/(x*y[x]^2-x^3)+ (2*y[x]^2-x^2)/(y[x]^3-x^2*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2*x**2 + y(x)**2)/(-x**3 + x*y(x)**2) + (-x**2 + 2*y(x)**2)*Derivative(y(x), x)/(-x**2*y(x) + y(x)**3),0) ics = {} dsolve(ode,func=y(x),ics=ics)