56.1.4 problem Ex 4

Internal problem ID [14082]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter 2, differential equations of the first order and the first degree. Article 8. Exact differential equations. Page 11
Problem number : Ex 4
Date solved : Thursday, October 02, 2025 at 09:10:58 AM
CAS classification : [_linear]

\begin{align*} x y^{\prime }+x +y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 13
ode:=y(x)+x+x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x}{2}+\frac {c_1}{x} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 17
ode=(y[x]+x)+ x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {x}{2}+\frac {c_1}{x} \end{align*}
Sympy. Time used: 0.094 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + x + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} - \frac {x}{2} \]