Internal
problem
ID
[14089]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
2,
differential
equations
of
the
first
order
and
the
first
degree.
Article
10.
Homogeneous
equations.
Page
15
Problem
number
:
Ex
2
Date
solved
:
Thursday, October 02, 2025 at 09:11:33 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=2*x^2*y(x)+3*y(x)^3-(x^3+2*x*y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x^2*y[x]+3*y[x]^3)-(x^3+2*x*y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*y(x) - (x**3 + 2*x*y(x)**2)*Derivative(y(x), x) + 3*y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)