56.8.1 problem Ex 1

Internal problem ID [14110]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter 2, differential equations of the first order and the first degree. Article 15. Page 22
Problem number : Ex 1
Date solved : Thursday, October 02, 2025 at 09:14:28 AM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x^{4} y \left (3 y+2 x y^{\prime }\right )+x^{2} \left (4 y+3 x y^{\prime }\right )&=0 \end{align*}
Maple. Time used: 0.025 (sec). Leaf size: 26
ode:=x^4*y(x)*(3*y(x)+2*x*diff(y(x),x))+x^2*(4*y(x)+3*x*diff(y(x),x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\operatorname {RootOf}\left (c_1 \,x^{2} \textit {\_Z}^{4}+2 c_1 x \,\textit {\_Z}^{3}-1\right )}{x} \]
Mathematica. Time used: 60.189 (sec). Leaf size: 1769
ode=x^4*y[x]*(3*y[x]+2*x*D[y[x],x])+ x^2*(4*y[x]+3*x*D[y[x],x])==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**4*(2*x*Derivative(y(x), x) + 3*y(x))*y(x) + x**2*(3*x*Derivative(y(x), x) + 4*y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out