Internal
problem
ID
[14110]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
2,
differential
equations
of
the
first
order
and
the
first
degree.
Article
15.
Page
22
Problem
number
:
Ex
1
Date
solved
:
Thursday, October 02, 2025 at 09:14:28 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=x^4*y(x)*(3*y(x)+2*x*diff(y(x),x))+x^2*(4*y(x)+3*x*diff(y(x),x)) = 0; dsolve(ode,y(x), singsol=all);
ode=x^4*y[x]*(3*y[x]+2*x*D[y[x],x])+ x^2*(4*y[x]+3*x*D[y[x],x])==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*(2*x*Derivative(y(x), x) + 3*y(x))*y(x) + x**2*(3*x*Derivative(y(x), x) + 4*y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out