Internal
problem
ID
[14119]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
2,
differential
equations
of
the
first
order
and
the
first
degree.
Article
17.
Other
forms
which
Integrating
factors
can
be
found.
Page
25
Problem
number
:
Ex
1
Date
solved
:
Thursday, October 02, 2025 at 09:14:55 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=3*x^2+6*x*y(x)+3*y(x)^2+(2*x^2+3*x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(3*x^2+6*x*y[x]+3*y[x]^2)+(2*x^2+3*x*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2 + 6*x*y(x) + (2*x**2 + 3*x*y(x))*Derivative(y(x), x) + 3*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)