Internal
problem
ID
[14136]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
2,
differential
equations
of
the
first
order
and
the
first
degree.
Article
19.
Summary.
Page
29
Problem
number
:
Ex
10
Date
solved
:
Thursday, October 02, 2025 at 09:15:50 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=-y(x)+x*diff(y(x),x) = (x^2-y(x)^2)^(1/2); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]-y[x]==Sqrt[x^2-y[x]^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - sqrt(x**2 - y(x)**2) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)