Internal
problem
ID
[14152]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
2,
differential
equations
of
the
first
order
and
the
first
degree.
Article
19.
Summary.
Page
29
Problem
number
:
Ex
26
Date
solved
:
Thursday, October 02, 2025 at 09:17:31 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=(x^2+y(x)^2)*(x+y(x)*diff(y(x),x))+(1+x^2+y(x)^2)^(1/2)*(y(x)-x*diff(y(x),x)) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2+y[x]^2)*(x+y[x]*D[y[x],x])+(1+x^2+y[x]^2)^(1/2)*(y[x]-x*D[y[x],x])==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + y(x)*Derivative(y(x), x))*(x**2 + y(x)**2) + (-x*Derivative(y(x), x) + y(x))*sqrt(x**2 + y(x)**2 + 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out