56.17.4 problem Ex 4

Internal problem ID [14185]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter IV, differential equations of the first order and higher degree than the first. Article 28. Summary. Page 59
Problem number : Ex 4
Date solved : Thursday, October 02, 2025 at 09:25:15 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} 3 {y^{\prime }}^{2} x -6 y y^{\prime }+x +2 y&=0 \end{align*}
Maple. Time used: 0.018 (sec). Leaf size: 32
ode:=3*x*diff(y(x),x)^2-6*y(x)*diff(y(x),x)+x+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= x \\ y &= -\frac {x}{3} \\ y &= \frac {4 c_1^{2}+2 c_1 x +x^{2}}{6 c_1} \\ \end{align*}
Mathematica. Time used: 0.176 (sec). Leaf size: 67
ode=3*x*(D[y[x],x])^2-6*y[x]*D[y[x],x]+x+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{3} x \left (-1+2 \cosh \left (-\log (x)+\sqrt {3} c_1\right )\right )\\ y(x)&\to -\frac {1}{3} x \left (-1+2 \cosh \left (\log (x)+\sqrt {3} c_1\right )\right )\\ y(x)&\to -\frac {x}{3}\\ y(x)&\to x \end{align*}
Sympy. Time used: 2.297 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x*Derivative(y(x), x)**2 + x - 6*y(x)*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {4 x^{2} e^{- C_{1}}}{3} + \frac {x}{3} + \frac {e^{C_{1}}}{12} \]