Internal
problem
ID
[14190]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IV,
differential
equations
of
the
first
order
and
higher
degree
than
the
first.
Article
28.
Summary.
Page
59
Problem
number
:
Ex
9
Date
solved
:
Thursday, October 02, 2025 at 09:25:47 AM
CAS
classification
:
[_separable]
ode:=x^2*diff(y(x),x)^2-2*(x*y(x)+2*diff(y(x),x))*diff(y(x),x)+y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(D[y[x],x])^2-2*(x*y[x]+2*D[y[x],x])*D[y[x],x]+y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x)**2 - (2*x*y(x) + 4*Derivative(y(x), x))*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)