56.17.11 problem Ex 11

Internal problem ID [14192]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter IV, differential equations of the first order and higher degree than the first. Article 28. Summary. Page 59
Problem number : Ex 11
Date solved : Friday, October 03, 2025 at 07:29:31 AM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} {y^{\prime }}^{2} x^{2}-2 x y y^{\prime }+y^{2}&=x^{2} y^{2}+x^{4} \end{align*}
Maple. Time used: 0.661 (sec). Leaf size: 56
ode:=x^2*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)+y(x)^2 = x^2*y(x)^2+x^4; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -i x \\ y &= i x \\ y &= \frac {x \left (c_1^{2} {\mathrm e}^{-x}-{\mathrm e}^{x}\right )}{2 c_1} \\ y &= -\frac {x \left (-c_1^{2} {\mathrm e}^{x}+{\mathrm e}^{-x}\right )}{2 c_1} \\ \end{align*}
Mathematica. Time used: 0.099 (sec). Leaf size: 26
ode=x^2*(D[y[x],x])^2-2*x*y[x]*D[y[x],x]+y[x]^2==x^2*y[x]^2+x^4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x \sinh (x-c_1)\\ y(x)&\to x \sinh (x+c_1) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**4 - x**2*y(x)**2 + x**2*Derivative(y(x), x)**2 - 2*x*y(x)*Derivative(y(x), x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out